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Convergence of Mean-Field Approximations in 
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We study the mean-field approximation in the site-percolation problem. Using 
the analog of the Simon-Lieb inequality, we show that the mean-field critical 
probability is convergent to the exact value when the size of clusters tends to 
infinity. Applying this approximation to the one-dimensional further-neighbor 
percolation problem and calculating some critical coefficients, we prove that the 
asymptotic scaling relations predicted by the coherent-anomaly method are 
satisfied. 
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1. I N T R O D U C T I O N  

One-dimensional  models very often can be solved exactly and hence 
provide us with a very good  test of  approximate  methods  such as the 
renormalizat ion group approach,  Monte  Carlo simulations, etc. This also 
concerns one-dimensional  percolat ion models, for which exact results have 
been found for an arbi t rary range of  bonds  n (holes of width up to n -  1 
do not  separate an animal). ~ It  was shown in these papers that  the 
critical probabil i ty p*  is equal to unity for any n, but  some critical 
exponents are n-dependent.  Namely:  /~ = 0 (the percolat ion probabil i ty in 
the vicinity of  p*) ,  7 = n  (the mean  cluster size), v = n  (the correlat ion 

* (the reaction of the length), r /=  1 (the correlat ion length at Pc ), 6 = 
percolat ion probabil i ty on "ghost  field"), ~ =  2 - n  (specific heat); in the 
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parentheses, we have put the quantities whose behavior is described by 
the corresponding exponents. The simplicity of this model and its rich 
critical behavior have inclined us to use it as a test of the general scheme 
to study phase transitions which was introduced by one of us (M.S.), 
namely the coherent-anomaly method (CAM). (3'4) 

The general idea of the CAM when applied to magnetic models can 
be sketched as follows: First, let us recall that in the Weiss mean-field 
approximation, an infinite system of interacting spins is replaced by a 
system of noninteracting spins merged into some effective field h Err. This 
field is subsequently determined from the consistency condition, which 
for translationally invariant systems states that h eft is proportional to 
the magnetization of the system. This crude method can, however, be 
improved. We can assume that the interacting system is replaced by a non- 
interacting finite clusters of spins merged into h eel. All interactions inside 
clusters are treated exactly and h eft is again determined from a similar 
consistency condition. Such an approximation is called a cluster mean-field 
approximation. When the size of the clusters tends to infinity, we expect 
that the solutions obtained by the cluster mean-field approximation are 
convergent toward the exact solution and that the corresponding critical 
coefficients show the so-called coherent anomaly. For example, the critical 
coefficient ] describing the mean-field-like divergence of the susceptibility 

has the form 

T -  T c 
)( ~ )~/3-- 1, / 3 = _ _  (1.1) 

Tc 

) ~ A  -~+1, A = (1.2) 
r*  

for large clusters. The symbols T c and T* stand for the mean-field and the 
exact critical temperatures, respectively. Hereafter we usually omit the term 
"cluster" when referring to the cluster mean-field approximation. Relations 
similar to (1.2) can also be written for other quantities and allow us to 
determine T* and critical exponents very accurately. 

Although the CAM relations are numerically well confirmed (5~ even 
for the percolation problem, (wS) their derivation is based on some scaling 
assumptions and more rigorous results concerning this scheme would be 
very desirable. Until now, such results have been obtained only for the one- 
dimensional Ising model, the spherical model, and the Gaussian model. (9) 

In the present paper we calculate the mean-field critical probability Pc 
and some critical coefficients for the above-mentioned one-dimensional per- 
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colation model with arbitrary range of bonds n. Our results confirm that 
the relations predicted by the CAM are satisfied for the investigated model. 

In Section 2 we introduce the concept of a local "ghost field" 
which allows us to write the condition for determining Pc in a simple and 
general form. Using this condition and the analog of the Simon-Lieb 
inequality (l~ proved for the percolation problem by Aizenman and 
Newman, (1~) we show that as the size of clusters tends to infinity, the 
obtained series of Pc is convergent toward the exact value. This result is 
very general and also can be applied to any d-dimensional model. In 
Section 3 we calculate Pc explicitly for the considered model and show that 
our result converges to the exact value in accordance with the finite-size 
scaling. (~3~ The calculation of some critical coefficients is presented in 
Section 4, where we also prove that asymptotically relations predicted by 
the CAM are satisfied. Section 5 contains a summary of our results. 

2. M E A N - F I E L D  A P P R O X I M A T I O N  A N D  ITS C O N V E R G E N C E  

In the mean-field approximation for Ising models the critical tem- 
perature is determined from the condition (9) 

1=~ ~ (SoSb) L (2.1) 
b ~ O L  

where fl = 1/kB T and summation of the two-spin center-to-border corre- 
lation functions is performed over boundary sites of the cluster L. This 
equation follows from the expansion of the self-consistency condition 
around the critical point. The aim of this section is to obtain a similar 
condition in the site percolation problem and to investigate some of its 
consequences. 

To start with the site percolation problem, let us recall the definition 
of the generating function for the number of animals of size s (per site): 

G(h)= ~ p~(1-h) s (2.2) 
s = l  

where p, is the probability that the central site 0 belongs to an animal of 
the size s. In order to derive the analog of (2.1) we have to replace a 
uniform "ghost field" h by a local "ghost field" h~. This leads to the 
following generating function G({h~ } ): 

G({hk})=Z psqr(1 -hk~)(1--hk2)'"(1--hks 1) (2.3) 

where p denotes the probability that a given site is occupied, q = 1 - p ,  and 
r stands for the size of the perimeter/14) The summation is performed over 
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all lattice animals which are connected to the site 0. The factor (1--hk) 
appears provided that the site k belongs to a given animal. It is obvious 
that if we put all hk equal to each other, then we obtain the expression 
(2.2). Our generalization enables us, however, to write the pair correlation 
function C0~ in a very simple form: 

Cok -Oa({hi}) c~hk (2.4) 

The derivative in (2.4) is calculated in the limit hj ~ 0 for j = 1, 2,.... The 
validity of (2.4) follows from the fact that nonzero contributions to C0k 
come only from those terms of G({hi}) for which the site k is occupied. 
Summation of these terms yields C0k, because the correlation function is 
equal, from the definition, to the probability that sites 0 and k are occupied 
and connected by any animal. 

To obtain the mean-field approximation in the site percolation 
problem, let us suppose that the central site belongs to a certain cluster L 
(other mean-field approaches to the site percolation problem can be found 
in refs. 7, 8, and 15). To avoid confusion, we would like to emphasize that 
a cluster is a certain set of sites on the lattice. On the other hand, what we 
here refer to as an animal is a given configuration of occupied and con- 
nected sites. As is well known, the role of a "ghost field" reduces to that of 
a factor diminishing the probability Ps, This is a consequence of the fact 
that the field connects a given animal to the infinite (or percolating) 
animal. Such an interpretation suggests the possibility of introducing the 
mean-field approximation by the following modification of G({hi}): 

G({hk})=y'pSqr(1--hkt)(1--hk2)...(1--hks ~)(1 -- P') '~ (2.5) 

where P' is the probability that a boundary site of the cluster L is con- 
nected to the infinite animal (by homogeneity, the probability is the same 
for each boundary site, but this can be easily generalized to the case with 
nonequivalent boundary sites), and m is the number of boundary sites in 
the given animal (i.e., m stands for the number of sites placed on the 
boundary of the cluster L). The summation in (2.5) is performed over all 
animals which can occupy the given cluster L. 

There is a simple formula which enables us to write the percolation 
probability P that the site 0 is connected to the infinite animal, using the 
generating function G. (14) With the use of this formula and (2.3) we can 
write 

P=~,,p'q"[1--(1--hkl)(1--hk:)...(1 --hk,_l)(1--P') m] (2.6) 
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where 0~<hk ~< 1. The summation in (2.6) is performed over all animals 
which are included in the given cluster L and which connect the site 0 to 
the border of the cluster. The self-consistency condition 

P'=P (2.7) 

leads to the equation 

p=~pSqr[l_(l_hkl)(l_hk2).. .(l_h,,  l ) (1_p)m]  (2.8) 

The critical probability Pc defined as the probability at which a nonzero 
solution of (2.8) vanishes (for h~=0)  can be found as the solution of the 
following equation: 

0 
1 = ~-~ [rhs of (2.8)] (2.9) 

where derivative is calculated for P--+ 0 and for hk--+ 0 (k=  1, 2,...). It is 
easy to show that in this limit we have 

0 0 
a-T = (2.10) 

Hence, Eq. (2.9) can be equivalently written in the form 

1= Z (2.11) 
b~OL 

Here C~b is the center-to-border correlation function calculated for all 
animals which are included in the given cluster L and which connect the 
site 0 to the border of the cluster. 

With the use of the Simon-Lieb inequality, (1~ it has been shown (9~ 
that for the Ising model, the mean-field critical temperature calculated as 
a solution of (2.1) is convergent in the limit of infinite cluster size to the 
exact value. The condition (2.11) suggests that a similar proof should also 
exist in the percolation problem. To show that this is really the case, we use 
the analog of the Simon-Lieb inequality proved for the percolation 
problem by Aizenman and Newman. (12) The essence of our method is, 
however, very similar to that presented in ref. 9. 

The Aizenman-Newman inequality can be written now as follows: 

Cok ~< Z L Cob Cbk (2.12) 
b~= ~L 

Here the summation is performed over all the sites which belong to the 
border c3L. If we want to tackle the further-neighbor percolation problem, 
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then our definition of Cok and CoCk has to allow some "holes" in the path. 
As the proof does not depend on such details, the inequality (2.12) is 
satisfied also in this general case. 

To prove the convergence 

lim" Pc = P* (2.13) 
R ~ o o  

for the cluster size R, let us suppose that p < Pc for certain L. Then 

CoLe = Co < 1 (2.14) 
be~3L 

The inequality comes from the fact that C~b is an increasing function of the 
probability p. By iterating (2.12) l times, where l =  [k /R] ,  we obtain 

Cok ~< C exp( - m o R [ k /  R ] ) (2.15) 

where mo = - R  -1 In Co, and C is some constant value. The exponential 
decay of the correlation function (2.15) implies p < p*. Now let us suppose 
that p < Pc*. This implies an exponential decay of the correlation function 
C0k. Thus, for large L, we obtain 

Z COCb< • Co6 R ~ ' 0 < I  (2.16) 
b e l L  b ~ O L  

We can then deduce that p < Pc. This, together with the previous con- 
clusion, proves (2.13). We should emphasize here that this proof implies 
that Pc always approaches p* from below. 

3. C A L C U L A T I O N  OF Pc 

To determine the critical probability Pc explicitly in the one-dimen- 
sional model, let us suppose that our cluster is a chain consisting of 2R + 1 
sites. Before solving this problem in a general case, we find solutions in 
some simple cases. 

3.1. Case n = l  

This case corresponds to the usual percolation problem where even a 
single hole disconnects an animal. The correlation function C0~ is equal to 

= pR (3.1) 



M e a n - F i e l d  Approximations in Si te  P e r c o l a t i o n  7 

According to (2.11), the critical probability can be found as the solution of 
the following equation: 

1 =2pc  e (3.2) 

Asymptotically for R ~> 1, the solution of (3.2) can be written in the form 

In 2 
qc=  1 - p ~ ~ - -  (3.3) 

R 

Of course, in the limit R ~ 0% our solution is convergent to the exact value 
p * = l .  

3.2. Case n = 2  
L In this case, to calculate the correlation function CoR, we have to 

include all animals with single holes. If our animal consists of k holes, then 
R - k  sites must be occupied and there are 

ways of distributing holes between the occupied sites. Thus, 

where a = q/p, R' = max{k: R - k/> k}, 

aR = a k 

k = 0  

To sum this series, let us notice that ae  is the Rth  term in the expansion 

f ( x ) =  ~ aRx R (3.5) 
R = 0  

where 

1 
(3.6) f (x )  1 - -  X - -  a x  2 

Hence, aR = f(m(O)/R! and further calculations are rather straightforward. 
We write the function f (x )  in the form 

A B 
f (x )  t- - -  (3.7) 

X - -  X 1 X - -  X 2 
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where A, B are constants and x~, x2 are roots of the denominator in (3.6). 
Differentiation of (3.7) yields 

A B 
a ~ = x~  + x-~ (3  8 ) 

For large R, the term with the smallest root (Xl) is dominant: 

A 
aR -~ x-~ (3.9) 

Using both (2.11) and the explicit form of A and x~, we can find the critical 
probability Pc as the solution of the following equation: 

2 ( qc ; 
1 =2CoCR (1 +4ac) tie (1 +4ac)1/2---1 (3.10) 

where ac =G/pc .  For large R, ac is small and our 
asymptotic form 

In 2 q 2  

solution has the 

(3.11) 

It should be pointed out here that this result is quite similar to (3.3). 

3.3. General  Case 

In the general case our method of calculation of CorR is very similar to 
that for the case n = 2. We have to take into account all configurations 
with ks single holes, k 2 double holes ..... k ,_  ~ ( n -  1)-holes, subject to the 
condition that 

R - N > / k l + k 2 +  ..- + k ,  1 (3.12) 

where 

Thus we can write 

where 

N = k l  + 2k2 + ... + ( n - 1 ) k ,  (3.13) 

CLR = p~aR (3,14) 

. . . . .  

X kn_l  
(3.15) 
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Fortunately, aR can also be found as the Rth term in the expansion (3.5), 
but the function f ( x )  is given now by 

1 
f ( x )  = 1 - - x - - a x 2 - - a 2 x  3 . . . . .  a n l x n  (3.!6) 

We skip the rather elementary analysis and say only that the function 
(3.16) can be expressed in a form similar to (3.7). Analogously, for R~> 1 
only the smallest root (Xl) gives dominant contributions to aR. Although 
an analytic expression for this root for arbitrary n is unavailable, it is 
enough to get its asymptotic (in the limit a -*  0) expansion. After some 
calculation we obtain 

l l - a + a 2 - . .  + a n _ 2 a n + ~  + O ( a  n+z) 
x l  = _ a + a  2 . - a n + O ( a  n+2) (3.17) 

n even 

n odd 

Substitution of (3.17) into (3.9) leads to an expression which can be written 
in the form 

In 2 
q~~ R (3.18) 

for small a and arbitrary n. Of course, (3.18) encompasses the cases n = ! 
and n = 2. We emphasize here that the result (3.18) implies that 

q c  ~ R l/n = R 1/v (3.19) 

since we have v = n  in our model. ~2) Equation (3.19) shows that the dif- 
ference between the exact critical probability q* = 0 and the approximate 
ones qc calculated by the mean-field approximation and by the finite-size 
scaling (13) scales in the same way. 

4. C R I T I C A L  E X P O N E N T S  [3 A N D  y 

To calculate the exponent fl, which describes the behavior of the 
percolation probability P near Pc*, 

e ~  (~*)~ (4.1) 

where 5*= ( P - P c / P c ,  we have to find the critical coefficient /5 which 
describes mean-field behavior of P near Pc: 

P ~ -Pe ~~ (4.2) 
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where/3o is the mean-field exponent  and e = ( p -  Pc)/Pc. The coefficients P 
and /3o can be easily found by expanding (2.8) a round  Pc for small P (for 
details, see ref. 7). Finally, we obtain  

/3 0 = 1 (4.3) 

and 

where 

and 

F !  /5 Pc (Pc) (4.4) 
G(pc) 

F(pc) = ~ mp,S q~. (4.5) 

1 pS r (4.6) G(pc) = ~ ~, m(m - 1) cqc 

In (4.5) we can separately sum the series with m = 1 (an animal  connected 
to the border  by one site) and with m = 2 (by two sites). In  the first case, 

L we have to sum up all the correlat ion functions CON, where R ~< N~< 2R, 
L and in the second case, we have to find CozR+ 1. Because m can only be 

equal  to 0, 1, or  2, in (4.6) we have to sum up all animals  only with m = 2. 
L Then  This cor responds  to calculating the corre la t ion function Co2 R+I.  

2 R  

F(pc)=2q"  c • CoL+2cL2R+I (4.7) 
N=R 

and 

G(pc) = L (4.8) CO2R + 1 

Direct  s u m m a t i o n  in (4.7) and (4.8) can be done in an analogous  way as 
in Section 3. Thus  we present  here only the final result: 

F(pc)= 2[1--  ( 1 -  pc)"] R (4.9) 

and 

1 (4.10) G(pc) = [-1 - (1 - pc)"]  2R = 

The last equali ty in (4.10) follows f rom the fact that  the equali ty F(pc)= 1 
determines the critical probabi l i ty  Pc [-this condi t ion is equivalent  to 
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(2.11)]. Substituting (4.9) and (4.10) into (4.4) and using (3.19), it is easy 
to obtain the asymptotic formula: 

P ~ R  1/n (4.11) 

But from (3.19), the asymptotic behavior of /5  can be equivalently written 
a s  

/ 5 ~ q  -1 (4.12) 

and the critical exponent/3 is equal to 

fl = / ~ o -  1 = 0  (4.13) 

for any n, in agreement with exact calculations. (2) 
To calculate the exponent ~,, which describes the divergence of the 

mean cluster size S near p*, 

S ~  (e*)-: '  (4.14) 

we have to find the critical coefficients o e which describe the mean-field-like 
divergence of S in the vicinity of p*: 

S ~  Se 7~ (4.15) 

The mean cluster size S can be calculated in the following way (7'14~: 

S =  - -  (4.16) 
ah 

To find (4.16), we have to put hk = h in (2.8) for k = 1, 2,.... Then differen- 
tiation yields 

where 

H(Pc) 
S (4.17) 

1 - F ( p c )  

H(pc) = ~ spS q r (4.18) 

and the summation is performed over all animals which are included in the 
given cluster L. The resulting series have a structure similar to that of 
the derivative of geometrical series and can be easily evaluated using the 
technique described in Section 3. The final analytic formula is rather 
lengthy, and we write here only an asymptotic estimation of (4.18) as 

H ( p c ) ~ R  2 l/n (4.19) 
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Fig.  1. The  p a r a m e t e r  qc as a func t ion  of  1/R for  n = 1. 
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Using (4.15), (4.19), (4.9), and (4.17), we can write 

H(pc) R l - -  1 / n  
= ~ (4.20) 

pcF (p,.) 

Then relation (3.19) allows us to write 

- -  n +  1 S~q, .  (4.21) 

This leads to the following value of the exponent 7: 

7 = n -  l + 1 = n  (4.22) 

in agreement with ref. 2. 
To make our analysis more transparent, we present some results 

obtained by numerical calculations. We choose chains with 3 ~< R ~ 100 as 
clusters. All quantities were calculated directly by summing up the corre- 
sponding combinatorial series without any asymptotic estimations. 
Figures 1 and 2 present plots of q~ as a function of 1/R for n = 1 and 2, 
respectively. The evident linearity in the limit 1/R ~ 0 confirms the relation 
(3.19). Figures 3 and 4 present the inverse of the critical coefficient P as a 
function of qc for n = 1 and 2, respectively. In Fig. 5 we plot S as a function 
of qc for n = 1. In the limit qc ~ 0, S apparently approaches some finite 
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Fig. 3. The inverse of the perco la t ion  p robab i l i t y  coefficient as a funct ion of qc for n = l. 
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value. Thus we can conclude that ~ q O  (constant), in agreement with 
(4.21). The analogous plot for n = 2 is presented in Fig. 6. Comparing the 
figures corresponding to n = 1 and n = 2, we can conclude that the con- 
vergence of the results in the latter case is much slower. We can explain this 
feature by investigating the next to the leading term A in the asymptotic 
expansion (3.18), namely 

In 2 
q" (1 + J )  where A,,~R - ~  (4.23) 

By numerical estimations, we have found that for n = 1 and 2, A 1 = 1 and 
0.6, respectively. For higher values of n, the exponent A1 has a smaller 
value�9 This implies a slower convergence of the obtained results. 

5. C O N C L U S I O N S  

In the first part of this paper, we investigated some general properties 
of the mean-field approximation for the site-percolation problem. Intro- 
ducing the concept of local "ghost fields," we showed that the mean-field 
critical probability can be found as a solution of the equation which has 
a very close counterpart in magnetic systems. Using the analog of the 
Simon-Lieb inequality for correlation functions, we proved that the mean- 

822/69/1-2-2 
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field cri t ical  p robab i l i t y  is smal ler  than  the exact  value for finite clusters 
and  tha t  it converges  to the exact  value in the l imit  of infinite cluster size. 
In  the second pa r t  of  this paper ,  we app l ied  the mean-f ie ld  a p p r o x i m a t i o n  
to the one -d imens iona l  fu r ther -ne ighbor  pe rco la t ion  problem.  Calcu la t ions  
of the cri t ical  p robab i l i t y  and some cri t ical  coefficients enab led  us to confirm, 
in the l imit  of  infinite cluster  size, cer ta in  re la t ions  pred ic ted  by the coherent -  
a n o m a l y  m e t h o d  (CAM) .  W e  believe tha t  re la t ions  pred ic ted  by the C A M  for 

o ther  exponents  are  also r igorous ly  satisfied in this limit. 
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